Bond-orientational descriptor
Definition
Bond-order parameters [1] are standard measures of structure in the first coordination shell. Let \(\mathbf{r}_i\) be the position of particle \(i\) and define \(\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i\) and \(r_{ij} = |\mathbf{r}_{ij}|\). Then consider the weighted microscopic density around particle \(i\):
where \(w_j\) is a particle-dependent weight and the sum involves a set of \(N_b(i)\) particles, which defines the coordination shell of interest for particle \(i\).
We project the microscopic density on a unit-radius sphere, that is, \(\hat{\rho}(\hat{\mathbf{r}}; i) = \sum_{j=1}^{N_b(i)} w_j \delta(\mathbf{r} - \hat{\mathbf{r}}_{ij})\), where \(\hat{\mathbf{r}} = \mathbf{r} / |\mathbf{r}|\) and similarly \(\hat{\mathbf{r}}_{ij} = \mathbf{r}_{ij}/|\mathbf{r}_{ij}|\). Expanding in spherical harmonics yields
with coefficients
In the conventional bond-order analysis, one sets the weights \(w_j\) to unity and considers the normalized complex coefficients,
The rotational invariants,
provide a detailed structural description of the local environment around particle \(i\).
We then consider \(Q_l(i)\) for a sequence of orders \(\{ l_n \} = \{ l_\mathrm{min}, \dots, l_\mathrm{max} \}\). The resulting feature vector for particle \(i\) is given by
Setup
Instantiating this descriptor on a Trajectory can be done as follows:
from partycls import Trajectory
from partycls.descriptors import BondOrientationalDescriptor
traj = Trajectory("trajectory.xyz")
D = BondOrientationalDescriptor(traj)
The constructor takes the following parameters:
- BondOrientationalDescriptor.__init__(trajectory, lmin=1, lmax=8, orders=None, accept_nans=True, verbose=False)[source]
- Parameters
trajectory (Trajectory) – Trajectory on which the structural descriptor will be computed.
lmin (int, default: 1) – Minimum order \(l_\mathrm{min}\). This sets the lower bound of the grid \(\{ l_n \}\).
lmax (int, default: 8) – Maximum order \(l_\mathrm{max}\). This sets the upper bound of the grid \(\{ l_n \}\). For numerical reasons, \(l_\mathrm{max}\) cannot be larger than 16.
orders (list, default: None) – Sequence \(\{l_n\}\) of specific orders to compute, e.g.
orders=[4,6]. This has the priority overlminandlmax.accept_nans (bool, default: True) – If
False, discard any row from the array of features that contains a NaN element. IfTrue, keep NaN elements in the array of features.verbose (bool, default: False) – Show progress information and warnings about the computation of the descriptor when verbose is
True, and remain silent when verbose isFalse.
Hint
The alias SteinhardtDescriptor can be used in place of BondOrientationalDescriptor.
Requirements
The computation of this descriptor relies on:
Lists of nearest neighbors. These can either be read from the input trajectory file, computed in the
Trajectory, or computed from inside the descriptor using a default method.
Demonstration
We consider an input trajectory file trajectory.xyz in XYZ format that contains two particle types "A" and "B". We compute the lists of nearest neighbors using the fixed-cutoffs method:
from partycls import Trajectory
# open the trajectory
traj = Trajectory("trajectory.xyz")
# compute the neighbors using pre-computed cuttofs
traj.nearest_neighbors_cuttofs = [1.45, 1.35, 1.35, 1.25]
traj.compute_nearest_neighbors(method='fixed')
nearest_neighbors = traj.get_property("nearest_neighbors")
# print the first three neighbors lists for the first trajectory frame
print("neighbors:\n",nearest_neighbors[0][0:3])
neighbors:
[list([16, 113, 171, 241, 258, 276, 322, 323, 332, 425, 767, 801, 901, 980])
list([14, 241, 337, 447, 448, 481, 496, 502, 536, 574, 706, 860, 951])
list([123, 230, 270, 354, 500, 578, 608, 636, 639, 640, 796, 799, 810, 826, 874, 913])]
We now instantiate a BondOrientationalDescriptor on this trajectory and restrict the analysis to type-B particles only. We set set the grid of orders \(\{l_n\} = \{2,4,6,8\}\):
from partycls.descriptors import BondOrientationalDescriptor
# instantiation
D = BondOrientationalDescriptor(traj, orders=[2,4,6,8])
# print the grid of orders
print("grid:\n", D.grid)
# restrict the analysis to type-B particles
D.add_filter("species == 'B'", group=0)
# compute the descriptor's data matrix
X = D.compute()
# print the first three feature vectors
print("feature vectors:\n", X[0:3])
grid:
[2 4 6 8]
feature vectors:
[[0.06498973 0.10586717 0.46374576 0.22207796]
[0.12762569 0.09640384 0.49318559 0.29457554]
[0.08327171 0.11151433 0.37917788 0.17902556]]
gridshows the grid of orders \(\{ l_n \}\).feature vectorsshows the first three feature vectors \(X^\mathrm{BO}(1)\), \(X^\mathrm{BO}(2)\) and \(X^\mathrm{BO}(3)\) corresponding to the grid.
References
- 1
Paul J. Steinhardt, David R. Nelson, and Marco Ronchetti. Bond-orientational order in liquids and glasses. Phys. Rev. B, 28(2):784–805, 1983. doi:10.1103/PhysRevB.28.784.