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I. TOKAMAK SYSTEMS MONITOR

The Tokamak Systems Monitor (TSM) software analyzes data from various sensors 
across systems to assess the ITER tokamak’s health. It reconstructs critical engineering 
parameters, evaluates operational margins, detects anomalies, and assists physics studies. 
This work presents the strategy for calibrating numerical models that TSM relies 
upon, focusing on the machine's structural dynamics.
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Sequential Model-Based Optimization (SMBO) enables the optimization of a 

function 𝐹(𝜽) that is expensive to evaluate and lacks a directly computable gradient, 
using as few observations as possible. Bayesian optimization, a common approach 
within SMBO, uses a Gaussian Process (GP) regressor [3] to build a surrogate model 

𝐹(𝜽)  from prior observations 𝐷 = 𝜽𝑛, 𝐹 𝜽𝑛 𝑛=1

𝑁obs
. This model not only predicts 

promising points for further evaluation but also accounts for uncertainties, both in noisy 
observations of the target function and in the surrogate's predictions. By doing so, it 
guides the selection of new parameter values 𝜽 and approximates 𝐹(𝜽) across the 
parameter space.

Using a simple form of the discrepancy function 
that only focuses on minimizing the distance 
between measured frequencies and simulated 
frequencies,

𝐹 𝜽 =
1

𝑁
σ𝑖=1

𝑁 𝑓𝑖  −  መ𝑓𝑖(𝜽)
2
,

the SMBO procedure explores the parameter 
space efficiently and iteratively finds new values 
of 𝜽best that decrease the value of 𝐹 𝜽 . In this
study, a small subset of 𝜽 = 10 model
parameters are varied, consisting only of the
densities 𝜌 and elasticities 𝐸 of components
predefined in the FEM model. A total of 𝑁obs =
300 modal simulations were run, including
𝑁init = 100 for the initial random sampling.

• Perform a more robust identification of the most influential model parameters 𝜽 to vary 
during the optimization.

• Incorporate more modal information into the discrepancy function 𝐹 (e.g., mode shapes, 
mass participation) and consider regularization techniques (e.g., Lasso, Ridge).

• Include uncertainties on the reference frequencies and mode shapes ({𝑓𝑖}, {𝜙𝑖}).

• Implement Sequential Domain Reduction [4] to dynamically reduce the search space.

• Leverage dimensionality reduction techniques or SAASBO [5] to allow for a larger 
number of tunable parameters 𝜽  and make the procedure more scalable.

• Improve the initial sampling phase using Latin Hypercube Sampling, Importance 
Sampling, etc.

• Expand this strategy to define the calibration workflow of other systems and engineering 
displicines covered by TSM.
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One-dimensional example of a Bayesian optimization 
using a Gaussian Process (𝑁obs = 6)

Finite element model updating [1] refines a computational model to match 
experimental data. Experimental modal analysis identifies a structure's dynamic 
properties using controlled testing, while operational modal analysis [2] determines these 
properties from normal operation without artificial excitation. However, in tokamaks, 
these traditional techniques are often impractical due to limited controlled excitations, 
sensor integration challenges, and extreme internal conditions. Therefore, calibration 
must rely on a reduced subset of immovable sensors and minimal modal information 
extracted from the free vibrations that follow a vertical displacement event.
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In the absence of experimental data, synthetic sensors signals from the 360° FEM model 
are used to emulate operational data in order to calibrate the 40° FEM model. 
Eventually, the large 360° FEM model will in turn be calibrated using experimental data.
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The optimizer iteratively selects the next 
point for evaluation 𝜽𝑛+1 by modeling the 
uncertainty of the discrepancy function 
𝐹 𝜽𝑛  using the Gaussian Process.

This process involves optimizing an acquisition 
function 𝑎(𝜽|𝐷) , which effectively balances 
exploration and exploitation to identify the most 
promising regions of the parameter space. In this study, 
𝑎(𝜽|𝐷)  has been chosen to be the Expected 
Improvement function, which estimates the expected 
gain over the current best observation of 𝐹(𝜽).

𝑛 = 𝑁init

During the initial random sampling, 
values of 𝐹(𝜽) are higher on average 
than in the SMBO phase, where 
Bayesian optimization explores the 
parameter space more efficiently, 
showing its potential for autonomously 
finding optimal model parameters with 
fewer observations.WorseBetter
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